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We investigate the microscopic mechanisms associated with strong and weak
damping in the adiabatic motion of the simple piston with finite mass and finite
amount of gas. The velocity of the piston relative to the thermal velocity of the
gas particles is the principal factor in determining the behaviour. When the
piston velocity is always smaller than the thermal velocity we observe weak
damping. When it is greater than the thermal velocity for part of its motion
there is strong damping.
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1. INTRODUCTION

The ‘‘adiabatic piston’’ is a classic textbook example of a problem which
can not be solved using the two laws of thermostatics. The system consists
of a finite cylinder containing two gases separated by a movable adiabatic
piston. Initially the two gases are in thermal equilibrium and the piston is
fixed. The problem is to study the time evolution, and the final state, when
the piston is free to move. (1) Recently this problem was investigated using
the Boltzmann equation, (2) the Liouville equation (3) as well as using
numerical simulation. It is now clear that the evolution of the piston pro-
ceeds in two stages with time scales which are very different if the mass of
the gas molecules is much smaller than the mass of the piston. In the first
stage the evolution of the piston is deterministic and the system evolves
adiabatically (no heat transfer from one gas to the other) toward a state of
mechanical equilibrium (equal pressures on both sides). On the other hand



in the second stage the evolution is stochastic; this stochastic behaviour
induces a heat transfer which then leads to thermal equilibrium.
Although the second stage, which proceeds on a very large time scale,

is qualitatively rather well understood, (4) the same is not true for the first
stage (i.e., for the adiabatic evolution). To gain insight into the adiabatic
evolution we have investigated the ‘‘simple piston’’ problem, that is just
one gas in a container with a piston which exerts a constant external force
(Fig. 1). This system does not exhibit the difficulties associated with the
adiabatic piston, and one easily deduces the final equilibrium state from the
two laws of thermostatistics. Experimentally this problem has been intro-
duced in 1929 as a method for measuring the ratio of the specific heats
cp/cv of a gas. (5) Recently new and unexpected results were observed which
indicate very different behaviour depending on whether the damping is
weak or strong. (6) If the piston motion is slow enough, the gas in the
cylinder is in a quasi-static state and one can assume that the process is
isoentropic. This is what has been assumed in Rüchardt’s experiment in
1929, and has been confirmed by recent experiments in the case of weak
damping. (6) However, for strong damping the recent experimental results
clearly indicate that the assumption of adiabatic oscillations is no longer
valid. In a recent paper (7) we have investigated this simple piston. If the
system is considered in the thermodynamic limit, where the dimensions of
the cylinder (X(t), L), the number of gas molecules N, and the mass M of
the piston are all infinite (with M/L, and LX(t)/N finite), then the
problem can be easily discussed since recollisions of gas molecules on the
piston can be neglected (at least at low enough densities). On the other
hand the case of a finite cylinder with finite N and M is much more diffi-
cult since now recollisions are the essential mechanism. We have studied
the simple piston in two-dimensions, from both a kinetic theory approach
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Fig. 1. The geometry for the adiabatic piston experiment is a cylinder of width L=470.302
containing 1728 hard disks, enclosed by a piston of mass M with initial position
X(0)=73.485.
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using the Boltzmann equation, and by direct molecular dynamics simula-
tion of a system with hard disk particles and rigid walls for both the walls
of the cylinder and the face of the piston. The observed motion of the
piston can very often be considered (to a good approximation) to be the
motion of a damped oscillator, with a characteristic frequency w and
damping coefficient l. In this work we identified ‘‘weak’’ and ‘‘strong’’
damping regimes.
We consider two initial states with the same geometry (cylinder and

position of the piston, Fig. 1), the same number of particles, temperature,
and external force, but different values of the piston massM (and thus dif-
ferent values of g, chosen such thatMg is fixed). The system is two-dimen-
sional and the fluid consists of 1728 hard disks of unit diameter. The initial
position of the piston is X(t=0)=73.485 (with L=470.302) correspond-
ing to an initial number density of 0.05. The initial temperature is kT=10
and the external force is F=−Mg=3200. Taking Enskog’s expression for
the pressure, p=0.5418, while the external pressure is F/L=−6.804.
Therefore the external force is larger than the force exerted by the fluid and
the piston evolves to the final state Xj=42.23, kTj=67.88 which is inde-
pendent ofM.
The characteristic feature of strong damping is best illustrated in

Fig. 2. In the first frame the temperature after one cycle of the piston
motion has changed from kT=10 to kT=14. Thus only a small amount
of energy has been transferred from the piston to the gas. In the second
frame, the strong damping state, in one cycle the temperature has increased
from kT=10 to kT=42. Thus in only one cycle the strong damping state
has transferred more than 50% of the energy from the piston to the gas.
Similarly the increase in the entropy is much higher in the second frame.

2. MECHANISMS

In this paper we consider two initial states which typify the two
damping regimes. For the strong damping state we take a piston mass
M=100 and g=32, and for the weak damping state we take a piston mass
M=8000 and g=0.4 (thus the forces Mg are the same). The initial tem-
peratures are both kT=10, and the final equilibrium positions are the
same (Xf=42.23 and kTf=67.88), thus the only difference is in the
approach to the final position. In what follows, we refer to states by spe-
cifying (kT, M, g), for example (10, 100, 32) for the strong damping state.
Movies of the two states show that the strong damping state has an
obvious wave develop in front of the piston as it moves down the cylinder
for the first time. In the weak damping case there is no such obvious wave
motion. These observations lead us to investigate microscopic motion in
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Fig. 2. (a) The position of the piston as a function of time for weak damping l/w % 0.014,
and then strong damping l/w % 0.082. (b) The x (dashed line) and y (solid line) temperatures
as a function of time during the first two cycles of the piston motion. The most obvious dif-
ference between the strong and weak damping regimes is that in the weak damping case more
of the internal energy is returned to the piston motion. Note that kTa= 1

N; i mv
2
ai where

a=x, y, and kT=1
2 (kTx+kTy).
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Fig. 2. (Continued).
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more detail looking at the number density and momentum density as a
function of position, between the bottom of the cylinder and the piston. In
much of what follows, we restrict our consideration to the first few cycles
of the piston motion because the differences in the damping rates are
evident very quickly.

2.1. Strong Damping Case

Our initial configuration of disks in the cylinder is allowed to ther-
malise for 2000 collisions and then the piston is released. For both the
strong and weak damping cases this corresponds to a time of t=3.68. The
simulation then continues until the new equilibrium is reached (or some
fluctuating state whose mean is the new equilibrium, see Fig. 2a).
Another way of seeing the effect of strong damping is to consider the

zeroth velocity moment j0(t), defined as

jq(t)=
(−1)q

q!
F
.

0
dv j(v, t) vq (1)
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Fig. 3. The piston motion versus the zeroth velocity moment which shows a strongly
damped motion towards an equilibrium position at J0(t)=1

2 . The initial straight segment from
X(0)=73.4 to X=42 is different in character to the subsequent motion.
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where j(v, t) is the velocity distribution at time t. j0(t) is the proportion of
the gas particles that are moving toward to piston face. The plot of piston
position X(t) versus j0(t), in Fig. 3, shows an initial straight segment, then
a fast spiralling motion toward the equilibrium point. The initial straight
segment appears to be different in character to the subsequent piston
motion. However, for the remainder of the motion X(t) and j0(t) are
correlated as they oscillate about their new equilibrium values.
Figure 4 shows the position and velocity of the piston over the first

two cycles. After the piston is released, the initial descent is marked by an
almost constant velocity V 5 −8 for a time of t 5 6, and hence a linear
displacement with time (this also corresponds to the linear segment in
Fig. 3), i.e., the force exerted by the fluid on the piston is constant, equal to
Mg. This is different from the behaviour of the piston in its second and
subsequent descents. The second cycle of the piston motion is more regular
with a steady change in velocity and associated change in position, i.e., the
force exerted by the fluid is again constant, but smaller thanMg.

0

10

20

30

40

50

60

70

80

-20

0

20

40

60

80

0 5 10 15 20 25 30

strong damping

X(t) V(t)

t

pi
st

on
 r

el
ea

se
d 

 t=
3.

68

position

velocity
constant

Fig. 4. The position and velocity of the piston as a function of time. The piston is released
at t=3.68 and reaches the bottom of its travel at t=10.48. The piston reaches a velocity of
V ’ −8 very quickly, then maintains that velocity until almost t=10.48.
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Fig. 5. The number density profiles at various times through the first descent of the piston
for the strong damping state (the piston is released at t=3.68). In the first few times there is
good evidence of a bow-wave on the front of the piston.

556 Morriss and Gruber



2.2. Number Density Profiles

A movie of the piston motion shows that when the piston moves down
for the first time it carries with it a dense region of particles within a small
distance from the piston surface. The leading edge of this wave-like struc-
ture reaches the bottom of the cylinder before the piston reaches its lowest
point. But when the piston begins moving up from its lowest point the fluid
looks to have a more uniform density at each time, which is determined by
the volume of the cylinder. There is no obvious wave like motion that
could be considered to come from a reflection from the cylinder base, or no
wave like motion in the second descent of the piston.
To look for more direct evidence of this wave motion, we construct

number density profiles between the piston face (at the right-hand side) and
the bottom of the cylinder (at x=0) and we observe a triangular shaped
wave in front of the piston. Initially the front of the wave travels faster
(v ’ −16) than the piston (V ’ −8), in this case, so that the slope of the
wave profile decreases with time. The wavefront reaches the wall just after
t=7.63, and then at t=9.43 the density profile is essentially constant.
The piston reaches the bottom of its travel at t=10.48, and the

number density profile reaches a maximum before the piston begins to
travel back up the cylinder. The density now begins to drop as the piston
moves up and the total volume increases. However, the number density
varies rather smoothly, with a maximum close to the bottom of the cylin-
der. The rising of the piston appears to be associated with a decrease in
number density across the whole fluid, without any strongly localised
motion or wave-like structure. Even at t=16.8, the number density profile
remains smooth, suggesting that the whole fluid is responding to the piston
motion rather than a localised wave motion. However, it should be
emphasised that the wavelength of a typical sound wave would be much
larger than the dimensions of the simulation and would not appear to be a
localised structure.

2.3. Instantaneous Pressure

The instantaneous pressure on the piston surface and the bottom of
the cylinder is calculated as a function of time (Fig. 6). For the strong
damping state the pressure on the piston surface increases immediately
after the piston is released, but thereafter the pressure slightly decreases
and remains relatively constant regardless of the piston position. The pres-
sure on the bottom of the cylinder behaves quite differently. It is strongly
peaked when the piston is at the lowest point of its motion, particularly for
the first cycle, but also a similar effect is observed for the second cycle of
the piston, as it should.
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Fig. 6. For the strong damping state (10, 100, 32) the pressure on the bottom of the cylinder
cycles with the motion of the piston, but the pressure on the piston face remains relatively
constant.

558 Morriss and Gruber



For nearby strong damping states (kT, M, g)=(10, 200, 16) &
(10, 50, 64), the behaviour of the instantaneous pressures mirrors that of
the state (10, 100, 32). The pressure on the piston surface is relatively con-
stant, but the pressure on the bottom of the cylinder is peaked at the
bottom of the piston motion. For the intermediate state (10, 800, 4), both
pressures are peaked at the lowest point of the piston motion but the pres-
sure on the piston face is about a factor of 2 smaller than the pressure on
the bottom of the cylinder. This behaviour, as we shall see, is intermediate
between the strong and weak cases.

2.4. x-Velocity Distribution

At various times through the first descent of the piston we can
examine the x-component of the velocity of each particle versus the x-
component of its position (see Fig. 7). In the first plot at t=3.98, immedi-
ately after the piston is released we observe a Maxwellian distribution of
velocity components for all positions, except very near the piston face
where a small band of large negative velocities occur due collisions with the
descending piston. In the second plot the movement of the piston has
increased this band of negative velocities, and again in the third plot. In the
fourth plot the band of negative velocities has reached the bottom of the
cylinder and there is some evidence of larger positive velocities due to
collisions with the bottom of the cylinder. The process continues in the last
two frames and there is a suggestion that the system has equilibrated to a
new, higher temperature.
In the case of strong damping, (2) the piston behaves initially like a

piston in an infinite cylinder and acquires almost immediately a stationary
velocity V=−8. Since the velocity is constant the effective pressure is
Mg/L=6.8 (consistent with Fig. 6). To reverse the momentum of the
piston, assuming that the time needed is about t=2, requires pressure dif-
ference of 2MV/Lt ’ 1.7 which is a small variation of the pressure on the
piston. On the other hand when the piston reaches its minimum position
the pressure on the bottom of the cylinder (taking the density 0.16 and a
temperature 120) is 19. Then the piston almost immediately acquires a
velocity V=+8 which means that the molecules with velocity less than 8
will not collide with it. Therefore the velocity distribution has an upper cut-
off of 8 which represents a typical thermal velocity. Thus, after one cycle,
the gas has increased its energy and the temperature to kT=40 which cor-
responds to an average thermal velocity of around 9.
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Fig. 7. The distribution of x-velocities as a function of the distance from the bottom of the
cylinder. The piston is released at t=3.68. In the first two frames the piston motion generates
particles with large negative velocities, through collisions.
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2.5. Weak Damping Case

Here the geometry is the same as that shown in Fig. 1, except for the
change in piston mass and g (although the product Mg remains unchan-
ged). Again the hard disk gas is first thermalised, the piston released at
t=3.68, and the simulation followed through time. In Fig. 8 is the graph
of piston position versus the zeroth velocity moment and this figure is quite
different from Fig. 3. There is a small straight segment, but both the clear
damping and strong circular motion are not as evident as for the strong
damping case. Indeed, for weak damping, fluctuations in j0 have replaced
the fluctuations in piston velocity of the strong damping case (see Figs. 3
and 8).
In Fig. 9 the motion of the piston is much smoother and there is little

difference between the first two descents. Both the velocity and position
change in a smooth but not sinusoidal way. Here most of the mass is in the
piston (M=8000) rather than the gas (Nm=1728), and the quantity with
the smallest mass shows the largest fluctuations.
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Fig. 8. The piston motion versus the zeroth velocity moment. Here the damping of the
motion is evident but considerably slower than in Fig. 3.
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Fig. 9. The position and velocity of the piston as a function of time. The piston is released
at t=3.68 and reaches the bottom of its travel at t=24.62. The piston slowly accelerates to
V=−5 then quickly accelerates to V=+5. The velocity repeats this same pattern during the
second cycle of the piston.

2.6. Number Density Profiles

There was no obvious evidence of a wave motion in this state.
However, there is some evidence of a wave motion in the number density
profiles with a wavefront at X=60 at t=6.82, and then at X=0 at
t=16.07. This gives a wave velocity of ’ −6, and as the piston velocity
decreases linearly from 0 to −5, the wave travels to the bottom of the
cylinder well before the piston reaches the bottom of its travel. After the
wave reaches the bottom of the cylinder the number density appears to
increase uniformly as the piston descends, and the volume decreases. The
change in number density profiles (Fig. 10) is not as dramatic as it was for
the strong damping state (at most a factor of two, compared with a factor
of three for strong damping). There is no evidence of the piston producing
a significant number of particles with large negative velocities.
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Fig. 10. The number density as a function of time through the first descent of the piston.
The first plot shows evidence of some wave like motion with a velocity of about −6 but the
amplitude is at most half that of the strong damping case. The second plot is the same simu-
lation but over the full time period taken for the piston to reach its lowest point.
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Fig. 11. The instantaneous pressures on the bottom of the cylinder and on the piston face
are approximately equal throughout the motion of the piston.
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2.7. Instantaneous Pressures

The instantaneous pressure on the piston surface and the bottom of
the cylinder are almost the same, as a function of time (Fig. 11). The sharp
peak in pressure occurs at the lowest point in the piston motion for both
the first and second cycles of the piston motion, and the peak heights are
indistinguishable. Clearly the pressure is uniform throughout the gas and
the system is almost always in a state of mechanical equilibrium, which is
entirely different from the strong damping case (Fig. 6).

2.8. x-Velocity Distribution

The x-components of velocity for the weak damping case in Fig. 12,
do not show the same behaviour as we saw in the strong damping in Fig. 7.
The motion of the piston is slower, so the distribution of velocities is not
greatly effected in the first three frames. At t=20.84 there is some sugges-
tion of some small asymmetry of velocities but this appears to have equili-
brated in the next two frames, at t=23.07 and t=24.70. Because the
piston velocity is smaller, the time scale is longer, the velocities have more
time to equilibrate.
In the case of weak damping, the piston only acquires a velocity

V=−5 before turning around. In this case the effective pressure during the
descent is strictly smaller than ’ 6.5. On the other hand the force per unit
area necessary to reverse the velocity is now about 2MV/Lt ’ 85 (which
correspond to results in Fig. 11) while the pressure on the bottom is
approximately 50 (using a density of 0.3 and a temperature of 120). Now
the piston will acquire a velocity at most equal to+5 and thus all the mol-
ecules with velocity larger than 5 will hit the piston and loose energy. In
this case, after one cycle the temperature of the gas increases to only
kT=14 which corresponds to an average thermal velocity of around 5.3.

3. CONCLUSIONS

As stated in the introduction, the final equilibrium state is very simple
to find using thermostatics. It is precisely because we know the final answer
that we want to understand whether there is an approach to this final state
from a microscopic point of view. This simple model poses fundamental
questions in statistical physics as one can see from. (8) It is in fact one of the
problems mentioned by Lieb in his talk ‘‘Some problems in statistical
mechanics that I would like to see solved.’’ The question: ‘‘Does the piston
evolve toward a stationary state?,’’ has been discussed as an open problem
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Fig. 12. The x-components of velocity as a function of distance from the bottom of the
cylinder. This weak damping case looks like a relatively uniform compression of the gas
leading to a steady rise in the temperature.

566 Morriss and Gruber



by Lebowitz et al.. (9) We show that for some values of the parameters con-
sidered here the oscillations can not be adiabatic which confirms the exper-
imental results mentioned in the introduction. The frequency of the
oscillations obtained with the adiabatic assumption coincide with the
frequencies observed in the simulations only for weak damping. On the
other hand the damping coefficient is entirely different.
Our results establish:

(i) The microscopic system evolves toward the equilibrium state
predicted from thermostatics using as a state function the Enskog formula,
i.e., our simulations provide some information on the question raised in the
paper of Lebowitz et al.. (9) In particular using only conservative mechanics
leads to the approach toward equilibrium. The adiabatic evolution of the
simple piston that we have discussed is a strictly Hamiltonian system with
constant total energy. In all cases we observe a damping mechanism, with
either weak or strong damping. As the system is Hamiltonian and the
phase space is bounded, the Poincaré recurrence theorem implies that the
initial state should re-occur after some finite time.

(ii) It is observed within this model that two types of damping
appear in the evolution toward the equilibrium state: strong damping and
weak damping. This result is new in statistical mechanics and is confirmed
by experiment. The simulations indicate how temperatures, pressures and
density evolve as functions of time. Such information is of interest in order
to obtain a realistic theoretical description. The mechanism that determines
whether we observe weak or strong damping depends upon the speed of the
piston relative to a typical thermal velocity of a gas particle in the cylinder.
Under a given force the speed of the piston will be small if the ratio of the
total mass of the fluid to the mass of the piston Nm/M is small; it will be
large if this ratio is large. The key point is that as the piston rises up the
cylinder after reaching its minimum position, only those gas particles
whose velocity is greater than the velocity of the piston, can collide with it,
and return some of their energy to the piston. This determines the flow of
internal energy from the gas back to mechanical energy of the piston.

(iii) The damping coefficient is shown from the simulation to be very
much different from the one predicted using simple kinetic theory together
with some simplifying assumption. Indeed, in different regimes of the ratio
of piston velocity to thermal velocity, the non-homogeneous nature of the
fluid in the piston plays a decisive role in the character of the damping. In
the case of weak damping the formulae for adiabatic oscillations gives a
frequency of w=0.147 (see ref. 7) while the observed value from the simu-
lation is w=0.145. On the other hand for strong damping one obtains
w=1.324 for adiabatic oscillations while the observed value is w=0.47.
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Therefore the assumption of adiabatic oscillations is not valid any more for
strong damping, as was already observed in ref. 6. Moreover the difference
between the observed value and the adiabatic case is much larger than the
case discussed in ref. 6.

The other significant observation is that the size of the fluctuations
observed in a component of the system (either the piston or the gas) is
inversely proportional to the mass of that component. Indeed when the
mass of the piston is large compared with the mass of the gas, as it is for
the weak damping example, the piston moves smoothly, while j0 (which is a
gas property) has large fluctuations. In the strong damping example where
the mass of the piston is smaller than the mass of the gas, the piston veloc-
ity has large fluctuations and j0 varies relatively smoothly.
A more detailed kinetic theory analysis of the simple piston will be

published elsewhere. (7)
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